The Recipe for Combining Performance & Phenotype

Determining the most effective means to select for economically important traits based on your breeding program, management & marketing endpoints

Segments of the Beef Industry

Primary Product Produced/Marketed

Seedstock Producers

Commercial Cow-Calf Producers

Yearling or Stocker Operator

Cattle Finishers

Breeding Stock, primarily bulls of breeding age.

Calves (6-10 mos.), 300-700 lb.

Feeder steers & heifers (most of them 12 - 20 months old, weighing 500-900 lb.)

Market steers & heifers, 16-30 mos. 900-1400 lb.

Characterized by:

- Many final markets & products
- Tremendous biological time lag
- Different traits of economic importance to each segment
- Segments are related & inter-twined but each has its own unique economic/management/marketing factors to consider, therefore.....
- Predatory relationships

Who controls the selection of genetics of cattle?

- Purebred breeders
- Cow/calf operations

PUREBRED BREEDERS HAVE AN IMMENSE RESPONSIBILTY TO MAKE GENETIC IMPROVEMENT IN ECONOMICALLY IMPORTANT TRAITS!

Purebred Beef Cattle sell to a very diverse base of clients.

- Cow-calf operations (who may or may not retain ownership past weaning). Product purchased?
- Other purebred seedstock breeders looking to change/improve upon different traits in their operation. Product purchased?
- 4-H and FFA junior exhibitors. Product purchased?

These potential customers are the driving force for what creates value.

Analyzing Your Production System

What is the best animal?

- What traits are economically relevant?
- What genotypes result in the phenotypes (level of performance) that are most profitable?

The genotype of the animal is just one part of a much larger system!

The key to determining the traits of importance and optimal genotypes for those traits is:

- A thorough analysis of the entire system
- Understanding the interaction among the components of the system:
 - Animals (genotypes)
 - Physical Production Environment
 - Fixed Resources & Management
 - Economics (production inputs & marketing endpoints)

Which leads to BREEDING OBJECTIVES – the goal of the breeding program

Identify Goals and Objectives of Your Breeding Plan

What genotypes/phenotypes fit your resources and intended marketing goals?

What are potential buyers looking for?

- when do they sell their calves?
- o how do they sell their calves?

The traits/performance levels that make \$ for your customers are the same ones that will make \$ for you

Master Breeders

- 1. Have a breeding program designed for the attainment of clearly defined breeding objectives.
- 2. Have a clear idea where their breed fits relative to other breeds and the industry as a whole. (Realize their breed can not be all things for all producers).
- 3. Have an identification and performance evaluation program including all Characteristics/Traits/Goals listed in breeding objectives.
- 4. Use all breeding Tools/Technologies available to pursue breeding objectives
- 5. Uncompromising (Stubborn?)
- 6. High Integrity of Records, contemporary groups, measurements, ancestry.
- 7. Their accomplishments and contributions are typically not recognized until they are very old or deceased.

Selection and Breeding of Cattle

Basic Concepts:

Phenotype = Genotype + Environment

Phenotype can be measured two ways:

- Subjectively
- Objectively

 Objectively – quantified by numbers, usually measured by machine

 Subjective – evaluated with the naked eye & subject to the skill & opinion of the evaluator

Which is better?

- There are many economically important traits that can best be evaluated subjectively by the naked eye.
 - Structural soundness (potential longevity)
 - Body type (volume & capacity)
 - Udder conformation
 - Balance, kind & eye appeal

- There are many economically important traits that are most accurately measured objectively.
 - Weights at birth, weaning & yearling
 - Fertility (percent heifer pregnancy, rebreeding intervals, etc)
 - Maternal performance (milk)
 - Feed intake & conversion rate
 - Carcass grades (Quality)

Basis For Selection:

Visual appraisal

- long been a means of determining animals breeding and market value
- requires a high degree of skill and experience –
 competence/accuracy requires the ability to make accurate
 and complete observations of animals as compared to an ideal
- can lead to error
- extremely important to evaluate many economically important traits that can't be evaluated objectively. For example: structural soundness, udder conformation, volume and capacity (body type), balance and kind.

Basis For Selection:

Genetic Prediction – generating estimates of genetic merit (breeding value) by a statistical method for predicting random genetic effects. Prediction is based on:

- individual performance records
- progeny performance records
- all relatives performance records (all ancestors, sibs, cousins, grand progeny, etc)
- can also include genomic results

EPDs after genomic typing

ID	BW	WW	YW	Milk	REA	
225	2.4	27	48	6	0.46	
235	4.0	30	49	4	0.58	
At birth:	2.4	27	49	6	0.46	

Which would you rather have as a cow?

Genetic Prediction

• If a trait can be measured objectively & quantified by a number, we can generate EPDs for individual animals within a breed.

 Selection based on EPDs is 5 - 9 times more accurate for objectively measured traits.

What is the best Bull?

<u>ID</u>	CED	BW	WW	YW	Milk	CEM	<u>\$F</u>
Α	13	-2.0	50	90	20	5	40
В	3	4.5	75	140	23	0	70
C	10	1.2	62	110	30	3	55
D	7	2.8	57	105	10	1	55
2017							
ave:	6.5	1.5	53	63	17	1.2	52

What is the best Bull?

<u>ID</u>	CED	BW	WW	YW	Milk	CEM	<u>\$F</u>
A	13	-2.0	50	90	20	5	40
В	3	4.5	75	140	23	0	70
C	10	1.2	62	110	30	3	55
D	7	2.8	57	105	10	1	55

If you need a terminal sire for use on mature cows and plan to retain ownership through finishing and sell fed cattle on a carcass value basis?

• Assuming bulls will sire 25 calves a year for 5 years, Bull B has the highest \$F value by \$15 per head over next best option, based on this:

125 offspring x \$15/head = \$1,875 more value for B than next best

What is the best Bull?

<u>ID</u>	CED	BW	WW	YW	Milk	CEM	<u>\$F</u>
Α	13	-2.0	50	90	20	5	40
В	3	4.5	75	140	23	0	70
C	10	1.2	62	110	30	3	55
D	7	2.8	57	105	10	1	55

If you have 20 virgin heifers to breed, have full time job that includes constant out of state travel, will use the bull in a terminal mating and sell all calves at weaning?

What is the best Bull?

<u>ID</u>	CED	BW	WW	YW	Milk	CEM	<u>\$F</u>
Α	13	-2.0	50	90	20	5	40
В	3	4.5	75	140	23	0	70
C	10	1.2	62	110	30	3	55
D	7	2.8	57	105	10	1	55

If you intent to use the bull on cows & heifers in a rotational mating system that generates your herd replacements and sell all other calves as yearlings?

Identify What Traits are Important to Your Program

Replacement females needed?

- fertility
- calving ease
- milk (how much?)
- udder conformation
- potential longevity
- volume and capacity
- Growth (balanced with calving ease and mature size)
- Balancing milk & mature size to your forage resources is critical to achieve reproductive efficiency/profitability

Selection pressure, time & your \$ are all precious commodities & should not be squandered!!

Breeding objectives should depend on what makes \$ for you & your customers.

Accuracy of selection is critical!

Use the tools available to your advantage!

Questions?

Mark Z. Johnson 405 880 1902 mark.johnson@okstate.edu

